event-sequence-transformation/hash_table.c

361 lines
8.4 KiB
C

#include <stdlib.h>
#include "hash_table.h"
#define FNV_OFFSET_BASIS 0xCBF29CE484222325
#define FNV_PRIME 0x00000100000001B3
inline static uint64_t
fnv_1a(uint8_t *bytes, size_t length)
{
uint64_t hash = FNV_OFFSET_BASIS;
for (size_t i = 0; i < length; ++i) {
uint8_t b = bytes[i];
hash ^= b;
hash *= FNV_PRIME;
}
return hash;
}
#define NULL_KEY ((HashTableKey){.length = 0, .bytes = NULL, .pre_hash = 0})
HashTableKey
hash_table_key_from_bytes(const char *bytes, size_t size)
{
if (!bytes) {
return NULL_KEY;
}
HashTableKey key = {
.length = size,
.bytes = bytes,
.pre_hash = fnv_1a((uint8_t*) bytes, size),
};
return key;
}
HashTableKey
hash_table_key_copy(const HashTableKey old)
{
if (!old.bytes) {
return NULL_KEY;
}
char *new_bytes = malloc(old.length + 1);
if (!new_bytes) {
return NULL_KEY;
}
memcpy(new_bytes, old.bytes, old.length);
new_bytes[old.length] = 0;
return (HashTableKey) {
.length = old.length,
.bytes = new_bytes,
.pre_hash = old.pre_hash,
};
}
void
hash_table_key_deinit_copied(HashTableKey *key)
{
if (key->bytes) {
free((char*) key->bytes);
key->bytes = NULL;
}
key->length = 0;
key->pre_hash = 0;
}
#define FAMILY_PRIME 0x1FFFFFFFFFFFFFFF
inline static HashFamilyMember
family_random_member()
{
uint64_t n[2];
for (int i = 0; i < 2; ++i) {
n[i] = (uint64_t)((rand() / (double) RAND_MAX) * (FAMILY_PRIME - RAND_MAX) + rand()) % FAMILY_PRIME;
}
if (!n[0]) {
n[0] = 1;
}
return (HashFamilyMember) {
.a = n[0],
.b = n[1],
};
}
inline static size_t
family_map(HashFamilyMember member, uint64_t pre_hash)
{
if (!member.a)
++member.a;
uint64_t hash = (pre_hash * member.a + member.b) % FAMILY_PRIME; // Integer overflows may influence the properties of this family
return hash;
}
bool
hash_table_key_equals(const HashTableKey lhs, const HashTableKey rhs)
{
if (lhs.pre_hash != rhs.pre_hash) {
return false;
}
if (lhs.length != rhs.length) {
return false;
}
if (lhs.bytes == rhs.bytes) {
return true;
}
if (!lhs.bytes || !rhs.bytes) {
return false;
}
size_t length = lhs.length;
return memcmp(lhs.bytes, rhs.bytes, length) == 0;
}
inline static size_t
initial_position(const HashTableKey key, const HashTableDynamicData * ht)
{
uint64_t hash = family_map(ht->family_member, key.pre_hash);
return hash % ht->capacity;
}
inline static size_t
probe_next(size_t current_index, size_t base_index, size_t iteration, size_t modulo)
{
(void) base_index;
(void) iteration;
++current_index;
current_index %= modulo;
return current_index;
}
static HashTableDynamicData
create_table(size_t capacity, size_t value_size, HashFamilyMember family_member)
{
HashTableDynamicData data = {
.value_array = NULL,
.capacity = 0,
.length = 0,
.key_array = NULL,
.family_member = family_member,
.value_size = value_size,
};
void *value_array = calloc(capacity, value_size);
if (!value_array) {
return data;
}
HashTableKeyEntry *key_array = T_ALLOC(capacity, HashTableKeyEntry);
if (!key_array) {
free(value_array);
return data;
}
data.value_array = value_array;
data.capacity = capacity;
data.key_array = key_array;
return data;
}
void
hash_table_init_impl(HashTableDynamicData * data, size_t value_size, void (*value_deinit)(void*))
{
*data = create_table(5, value_size, family_random_member());
data->value_deinit = value_deinit;
}
void
hash_table_deinit_impl(HashTableDynamicData * data)
{
if (data->key_array && data->value_array && data->length) {
void (*value_deinit)(void*) = data->value_deinit;
for (HashTableIndex i = 0; i < (ssize_t) data->capacity; ++i) {
if (data->key_array[i].key.bytes) {
if (value_deinit) {
value_deinit(data->value_array + (data->value_size * (size_t) i));
}
hash_table_key_deinit_copied(&data->key_array[i].key);
}
}
}
if (data->key_array) {
free(data->key_array);
data->key_array = NULL;
}
if (data->value_array) {
free(data->value_array);
data->value_array = NULL;
}
data->capacity = 0;
data->length = 0;
}
static void
hash_table_grow(HashTableDynamicData * old_ht)
{
size_t capacity = old_ht->capacity;
capacity += (capacity >> 1) + 1;
const size_t value_size = old_ht->value_size;
HashTableDynamicData new_ht = create_table(capacity, value_size, old_ht->family_member);
if (!new_ht.key_array) {
return;
}
for (size_t i = 0; i < old_ht->capacity; ++i) {
if (!old_ht->key_array[i].key.bytes) {
continue;
}
if (hash_table_insert_impl(&new_ht, old_ht->key_array[i].key, old_ht->value_array + (i * value_size)) < 0) {
hash_table_deinit_impl(&new_ht);
return;
}
}
new_ht.value_deinit = old_ht->value_deinit;
old_ht->value_deinit = NULL;
// TODO avoid duplication-deletion of the keys
hash_table_deinit_impl(old_ht);
*old_ht = new_ht;
}
static void
hash_table_change_hash(HashTableDynamicData * old_ht)
{
const size_t capacity = old_ht->capacity;
const size_t value_size = old_ht->value_size;
HashTableDynamicData new_ht = create_table(capacity, value_size, family_random_member());
if (!new_ht.key_array) {
return;
}
for (size_t i = 0; i < old_ht->capacity; ++i) {
if (!old_ht->key_array[i].key.bytes) {
continue;
}
if (hash_table_insert_impl(&new_ht, old_ht->key_array[i].key, old_ht->value_array + (i * value_size)) < 0) {
hash_table_deinit_impl(&new_ht);
return;
}
}
new_ht.value_deinit = old_ht->value_deinit;
old_ht->value_deinit = NULL;
// TODO avoid duplication-deletion of the keys
hash_table_deinit_impl(old_ht);
*old_ht = new_ht;
}
HashTableIndex
hash_table_insert_impl(HashTableDynamicData * ht, const HashTableKey key, const void * value_ptr)
{
if (!key.bytes) {
return -1;
}
size_t length = ht->length;
size_t capacity = ht->capacity;
if (length + (length >> 1) >= ht->capacity) {
hash_table_grow(ht);
capacity = ht->capacity;
}
if (length >= capacity) {
return -1;
}
const size_t base_index = initial_position(key, ht);
size_t current_index = base_index;
size_t collision_offset = 0;
bool found = false;
bool overwrite = false;
bool pre_hash_collision = false;
for (; collision_offset < capacity; current_index = probe_next(current_index, base_index, ++collision_offset, capacity)) {
if (!ht->key_array[current_index].key.bytes) {
found = true;
break;
}
if (hash_table_key_equals(key, ht->key_array[current_index].key)) {
overwrite = true;
found = true;
break;
}
if (!pre_hash_collision) {
pre_hash_collision = key.pre_hash == ht->key_array[current_index].key.pre_hash;
}
}
if (!found) {
return -1;
}
void *value_target_ptr = ht->value_array + (ht->value_size * current_index);
if (ht->key_array[base_index].max_collision_offset < collision_offset) {
ht->key_array[base_index].max_collision_offset = collision_offset;
}
if (overwrite) {
// Deinitialize the old value
void (*value_deinit)(void*) = ht->value_deinit;
if (value_deinit) {
value_deinit(value_target_ptr);
}
} else {
// Make a local copy of the key
ht->key_array[current_index].key = hash_table_key_copy(key);
}
memcpy(value_target_ptr, value_ptr, ht->value_size); // Assign the value
ht->length = ++length;
if (!pre_hash_collision && (collision_offset << 1) > capacity + 6) {
hash_table_change_hash(ht);
}
return current_index;
}
HashTableIndex
hash_table_find_impl(const HashTableDynamicData * ht, const HashTableKey key)
{
if (!key.bytes) {
return -1;
}
const size_t capacity = ht->capacity;
const size_t base_index = initial_position(key, ht);
const size_t max_collision_offset = ht->key_array[base_index].max_collision_offset;
size_t collision_offset = 0;
size_t current_index = base_index;
for (; collision_offset <= max_collision_offset; current_index = probe_next(current_index, base_index, ++collision_offset, capacity)) {
if (hash_table_key_equals(key, ht->key_array[current_index].key)) {
return current_index;
break;
}
}
return -1;
}
bool
hash_table_delete_at_index_impl(HashTableDynamicData * ht, const HashTableIndex index)
{
if (!ht) {
return false;
}
if (index < 0 || (size_t) index > ht->capacity) {
return false;
}
HashTableKeyEntry *key_entry_ptr = ht->key_array + index;
void *value_ptr = ht->value_array + (ht->value_size * index);
if (!key_entry_ptr->key.bytes) {
// No entry at index
return false;
}
// TODO find base_index and reduce its max_collision_offset when provably justified
hash_table_key_deinit_copied(&key_entry_ptr->key);
ht->length -= 1;
void (*value_deinit)(void*) = ht->value_deinit;
if (value_deinit) {
value_deinit(value_ptr);
}
memset(value_ptr, 0, ht->value_size);
return true;
}