// x-run: make img2cpi CC=clang // x-run: ~/scripts/runc.sh % -Wall -Wextra -lm --- ~/images/boykisser.png cpi-images/boykisser.cpi #include #include #include #include #include #include #include #include #include #include #include #include #include "cc-common.h" #ifdef USE_OPENMP #include #endif #define MAX_COLOR_DIFFERENCE 768 #define K_MEANS_ITERATIONS 4 struct cc_char { unsigned char character; unsigned char bg, fg; }; struct arguments { bool fast_mode; int width, height; enum cpi_version { CPI_VERSION_AUTO, CPI_VERSION_RAW, CPI_VERSION_0, CPI_VERSION_1, CPI_VERSION_2, } cpi_version; enum placement { PLACEMENT_CENTER, PLACEMENT_COVER, PLACEMENT_TILE, PLACEMENT_FULL, PLACEMENT_EXTEND, PLACEMENT_FILL } placement; enum palette_type { PALETTE_DEFAULT, PALETTE_DEFAULT_GRAY, PALETTE_AUTO, PALETTE_PATH, PALETTE_LIST } palette_type; char *palette; char *input_path; char *output_path; } args = { .fast_mode = false, .width = 4 * 8 - 1, // 4x3 blocks screen .height = 3 * 6 - 2, .cpi_version = CPI_VERSION_AUTO, .placement = PLACEMENT_FULL, .input_path = NULL, .output_path = NULL, .palette = NULL, .palette_type = PALETTE_DEFAULT // TODO(kc): change to PALETTE_AUTO when // k-means is implemented }; struct image { int w, h; union color *pixels; }; struct image_pal { int w, h; uint8_t *pixels; const struct palette *palette; }; struct k_means_state { const struct image *items; struct palette *clusters; uint8_t *predicted_cluster; struct k_means_centroid_intermediate { struct { float r, g, b; } sums; size_t count; union color closest_present_item; float closest_present_distance; } *centroid_intermediate; size_t item_count; }; bool parse_cmdline(int argc, char **argv); void show_help(const char *progname, bool show_all, FILE *fp); struct image *image_load(const char *fp); struct image *image_new(int w, int h); struct image *image_resize(struct image *original, int new_w, int new_h); struct image_pal *image_quantize(struct image *original, const struct palette *palette); void image_unload(struct image *img); float get_color_difference(union color a, union color b); float get_color_brightness(union color clr); void get_size_keep_aspect(int w, int h, int dw, int dh, int *ow, int *oh); void convert_2x3(const struct image_pal *img, struct cc_char *characters); void convert_6x9(const struct image_pal *img, struct cc_char *characters); int save_cpi_0(FILE *fp, const struct palette *pal, const struct cc_char *chars, int w, int h); int save_cpi_1(FILE *fp, const struct palette *pal, const struct cc_char *chars, int w, int h); // Only one global custom palette is maintained struct palette *custom_palette_resize(uint8_t size); struct palette *custom_palette_from(const struct palette *orig); struct k_means_state k_means_init(const struct image *image, struct palette *starting_palette); bool k_means_iteration(struct k_means_state *state); void k_means_end(struct k_means_state *state); struct palette *palette_k_means(const struct image *image, const struct palette *prototype); const char *known_file_extensions[] = { ".png", ".jpg", ".jpeg", ".jfif", ".jpg", ".gif", ".tga", ".bmp", ".hdr", ".pnm", 0 }; static const struct optiondocs { char shortopt; char *longopt; char *target; char *doc; struct optiondocs_choice { char *value; char *doc; } *choices; } optiondocs[] = { { 'h', "help", 0, "Show help", 0 }, { 'f', "fast", 0, "Use fast (old) method for picking characters and colors", 0 }, { 'W', "width", "width", "Width in characters", 0 }, { 'h', "height", "height", "Height in characters", 0 }, { 'P', "palette", "palette", "Use specific palette.\n" " `auto` uses automatic selection\n" " `default` uses default palette\n" " `defaultgray` uses default grayscale palette\n" " `list:#RRGGBB,#RRGGBB,...` uses hard-coded one\n" " `txt:PATH` reads hex colors from each line in a file\n", 0 }, { 'V', "cpi_version", "version", "Force specific version of CPI", (struct optiondocs_choice[]) { { "-2,raw", "Use raw format. No headers, no palette, just characters and colors" }, { "-1,auto", "Choose best available" }, { "0", "OG CPI, 255x255, uncompressed" }, { "1", "CPIv1, huge images, uncompressed" }, { "255", "In-dev version, may not work" }, { 0, 0 } } }, { 'p', "placement", "placement", "Image placement mode (same as in hsetroot)", (struct optiondocs_choice[]){ { "center", "Render image centered on the canvas" }, { "cover", "Centered on screen, scaled to fill fully" }, { "tile", "Render image tiled" }, { "full", "Use maximum aspect ratio" }, { "extend", "Same as \"full\", but filling borders" }, { "fill", "Stretch to fill" }, { 0, 0 } } }, { 0, 0, "input.*", "Input file path", 0 }, { 0, 0, "output.cpi", "Output file path", 0 }, { 0 } }; int main(int argc, char **argv) { if (!parse_cmdline(argc, argv)) { show_help(argv[0], false, stderr); fprintf(stderr, "Fatal error occurred, exiting.\n"); return EXIT_FAILURE; } struct image *src_image = image_load(args.input_path); if (!src_image) { fprintf(stderr, "Error: failed to open the file\n"); return EXIT_FAILURE; } struct image *canvas; if (args.fast_mode) { canvas = image_new(args.width * 2, args.height * 3); } else { canvas = image_new(args.width * 6, args.height * 9); } if (!canvas) { fprintf(stderr, "Error: failed to allocate second image buffer\n"); return EXIT_FAILURE; } // TODO: load palette, maybe calculate it too? k-means? const struct palette *palette = &cc_default_palette; switch (args.palette_type) { case PALETTE_DEFAULT: palette = &cc_default_palette; break; case PALETTE_DEFAULT_GRAY: palette = &cc_default_gray_palette; break; case PALETTE_AUTO: palette = palette_k_means(src_image, &cc_default_palette); break; case PALETTE_LIST: assert(0 && "Not implemented"); break; case PALETTE_PATH: assert(0 && "Not implemented"); break; default: assert(0 && "Unreachable"); } // TODO: properly scale struct image *scaled_image; { int new_w, new_h; get_size_keep_aspect(src_image->w, src_image->h, canvas->w, canvas->h, &new_w, &new_h); scaled_image = image_resize(src_image, new_w, new_h); if (!scaled_image) { fprintf(stderr, "Error: failed to open the file\n"); return EXIT_FAILURE; } } // TODO: position image properly int small_w = scaled_image->w < canvas->w ? scaled_image->w : canvas->w; int small_h = scaled_image->h < canvas->h ? scaled_image->h : canvas->h; for (int y = 0; y < small_h; y++) { memcpy(&canvas->pixels[y * canvas->w], &scaled_image->pixels[y * scaled_image->w], small_w * sizeof(union color)); } // TODO: actually do stuff struct cc_char *characters = calloc(args.width * args.height, sizeof(struct cc_char)); struct image_pal *quantized_image = image_quantize(canvas, palette); if (!quantized_image) { fprintf(stderr, "Error: failed to open the file\n"); return EXIT_FAILURE; } if (args.fast_mode) { convert_2x3(quantized_image, characters); } else { convert_6x9(quantized_image, characters); } FILE *fp = fopen(args.output_path, "wb"); if (args.width < 256) { save_cpi_0(fp, palette, characters, args.width, args.height); } else { save_cpi_1(fp, palette, characters, args.width, args.height); } fclose(fp); image_unload(src_image); image_unload(canvas); return EXIT_SUCCESS; } int _write_palette_full(FILE *fp, const struct palette *pal) { int written = 0; assert(pal->count == 16 && "Invalid palette size"); for (int i = 0; i < 16; i++) { written += fputc(pal->colors[i].rgba.r, fp); written += fputc(pal->colors[i].rgba.g, fp); written += fputc(pal->colors[i].rgba.b, fp); } return written; } int _write_pixeldata_v0(FILE *fp, const struct cc_char *chars, int w, int h) { int written = 0; for (int i = 0; i < w * h; i++) { written += fputc(chars[i].character, fp); written += fputc(chars[i].bg | (chars[i].fg << 4), fp); } return written; } int save_cpi_0(FILE *fp, const struct palette *pal, const struct cc_char *chars, int w, int h) { int written = 0; written += fwrite("CCPI", 1, 4, fp); written += fputc(w, fp); written += fputc(h, fp); written += fputc(0x00, fp); written += _write_palette_full(fp, pal); written += _write_pixeldata_v0(fp, chars, w, h); return written; } int save_cpi_1(FILE *fp, const struct palette *pal, const struct cc_char *chars, int w, int h) { int written = 0; written += fwrite("CPI\x01", 1, 4, fp); written += write_varint(fp, w); written += write_varint(fp, h); written += _write_palette_full(fp, pal); written += _write_pixeldata_v0(fp, chars, w, h); return written; } bool parse_cmdline(int argc, char **argv) { static struct option options[] = { { "help", no_argument, 0, 'h' }, { "fast", no_argument, 0, 'f' }, { "width", required_argument, 0, 'W' }, { "height", required_argument, 0, 'H' }, { "cpi_version", required_argument, 0, 'V' }, { "placement", required_argument, 0, 'p' }, { "palette", required_argument, 0, 'P' }, { 0, 0, 0, 0 } }; while (true) { int option_index = 0; int c = getopt_long(argc, argv, "hfW:H:V:p:P:", options, &option_index); if (c == -1) break; if (c == 0) c = options[option_index].val; if (c == '?') break; switch (c) { case 'h': // --help show_help(argv[0], true, stdout); exit(EXIT_SUCCESS); break; case 'f': // --fast args.fast_mode = true; if (args.cpi_version != CPI_VERSION_AUTO) { fprintf(stderr, "Warning: text mode ignores version\n"); } break; case 'W': // --width args.width = atoi(optarg); break; case 'H': // --height args.height = atoi(optarg); break; case 'V': // --cpi_version { if (0 == strcmp(optarg, "auto") || 0 == strcmp(optarg, "-1")) { args.cpi_version = CPI_VERSION_AUTO; } else if (0 == strcmp(optarg, "raw") || 0 == strcmp(optarg, "-2")) { args.cpi_version = CPI_VERSION_RAW; } else if (0 == strcmp(optarg, "0")) { args.cpi_version = CPI_VERSION_0; } else if (0 == strcmp(optarg, "1")) { args.cpi_version = CPI_VERSION_1; } else if (0 == strcmp(optarg, "2")) { args.cpi_version = CPI_VERSION_2; } } break; case 'p': // --placement if (0 == strcmp(optarg, "center")) { args.placement = PLACEMENT_CENTER; } else if (0 == strcmp(optarg, "cover")) { args.placement = PLACEMENT_COVER; } else if (0 == strcmp(optarg, "tile")) { args.placement = PLACEMENT_TILE; } else if (0 == strcmp(optarg, "full")) { args.placement = PLACEMENT_FULL; } else if (0 == strcmp(optarg, "extend")) { args.placement = PLACEMENT_EXTEND; } else if (0 == strcmp(optarg, "fill")) { args.placement = PLACEMENT_FILL; } else { fprintf(stderr, "Error: invaild placement %s\n", optarg); return false; } break; case 'P': // --palette if (0 == strcmp(optarg, "default")) { args.palette_type = PALETTE_DEFAULT; } else if (0 == strcmp(optarg, "defaultgray")) { args.palette_type = PALETTE_DEFAULT_GRAY; } else if (0 == strcmp(optarg, "auto")) { args.palette_type = PALETTE_AUTO; } else if (0 == strncmp(optarg, "list:", 5)) { args.palette_type = PALETTE_LIST; args.palette = &optarg[5]; } else { fprintf(stderr, "Error: invaild palette %s\n", optarg); return false; } break; } } if (optind == argc) { fprintf(stderr, "Error: no input file provided\n"); return false; } else if (optind + 1 == argc) { fprintf(stderr, "Error: no output file provided\n"); return false; } else if ((argc - optind) != 2) { fprintf(stderr, "Error: too many arguments\n"); return false; } args.input_path = argv[optind]; args.output_path = argv[optind + 1]; const char *extension = strrchr(args.input_path, '.'); if (!extension) { fprintf(stderr, "Warning: no file extension, reading may fail!\n"); } else { bool known = false; for (int i = 0; known_file_extensions[i] != 0; i++) { if (0 == strcasecmp(known_file_extensions[i], extension)) { known = true; break; } } if (!known) { fprintf(stderr, "Warning: unknown file extension %s, reading may fail!\n", extension); } } return true; } void show_help(const char *progname, bool show_all, FILE *fp) { fprintf(fp, "usage: %s", progname); for (int i = 0; optiondocs[i].doc != 0; i++) { struct optiondocs doc = optiondocs[i]; fprintf(fp, " ["); if (doc.shortopt) fprintf(fp, "-%c", doc.shortopt); if (doc.shortopt && doc.longopt) fprintf(fp, "|"); if (doc.longopt) fprintf(fp, "--%s", doc.longopt); if (doc.target) { if (doc.shortopt || doc.longopt) fprintf(fp, " "); fprintf(fp, "%s", doc.target); } fprintf(fp, "]"); } fprintf(fp, "\n"); if (!show_all) return; fprintf(fp, "\n"); fprintf(fp, "ComputerCraft Palette Image converter\n"); fprintf(fp, "\n"); fprintf(fp, "positional arguments:\n"); for (int i = 0; optiondocs[i].doc != 0; i++) { struct optiondocs doc = optiondocs[i]; if (!doc.shortopt && !doc.longopt) { fprintf(fp, " %s\t%s\n", doc.target, doc.doc); } } fprintf(fp, "\n"); fprintf(fp, "options:\n"); for (int i = 0; optiondocs[i].doc != 0; i++) { struct optiondocs doc = optiondocs[i]; if (!doc.shortopt && !doc.longopt) { continue; } fprintf(fp, " "); int x = 2; if (doc.shortopt) { fprintf(fp, "-%c", doc.shortopt); x += 2; } if (doc.shortopt && doc.longopt) { fprintf(fp, ", "); x += 2; } if (doc.longopt) { fprintf(fp, "--%s", doc.longopt); x += strlen(doc.longopt) + 2; } if (doc.choices) { fprintf(fp, " {"); for (int j = 0; doc.choices[j].value != 0; j++) { if (j > 0) { fprintf(fp, ","); x += 1; } fprintf(fp, "%s", doc.choices[j].value); x += strlen(doc.choices[j].value); } fprintf(fp, "}"); x += 3; } else if (doc.target) { fprintf(fp, " "); fprintf(fp, "%s", doc.target); x += strlen(doc.target) + 1; } if (x > 24) fprintf(fp, "\n%24c", ' '); else fprintf(fp, "%*c", 24 - x, ' '); fprintf(fp, "%s\n", doc.doc); if (doc.choices) { for (int j = 0; doc.choices[j].value != 0; j++) { fprintf(fp, "%26c", ' '); if (doc.shortopt) fprintf(fp, "-%c ", doc.shortopt); else if (doc.longopt) fprintf(fp, "--%s", doc.longopt); fprintf(fp, "%-12s %s\n", doc.choices[j].value, doc.choices[j].doc); } } } } struct image *image_load(const char *fp) { struct image *img = calloc(1, sizeof(struct image)); if (!img) return NULL; img->pixels = (union color*)stbi_load(fp, &img->w, &img->h, 0, 4); if (!img->pixels) { free(img); return NULL; } return img; } struct image *image_new(int w, int h) { struct image *img = calloc(1, sizeof(struct image)); if (!img) return NULL; img->pixels = calloc(h, sizeof(union color) * w); img->w = w; img->h = h; if (!img->pixels) { free(img); return NULL; } return img; } struct image *image_resize(struct image *original, int new_w, int new_h) { struct image *resized = image_new(new_w, new_h); if (!resized) return NULL; stbir_resize_uint8_srgb((unsigned char *)original->pixels, original->w, original->h, 0, (unsigned char *)resized->pixels, resized->w, resized->h, 0, STBIR_RGBA); return resized; } void image_unload(struct image *img) { free(img->pixels); free(img); } void get_size_keep_aspect(int w, int h, int dw, int dh, int *ow, int *oh) { *ow = dw; *oh = dh; float ratio = (float)w / (float)h; float ratio_dst = (float)dw / (float)dh; int tmp_1, tmp_2; if (ratio_dst >= ratio) { tmp_1 = floor(dh * ratio); tmp_2 = ceil(dh * ratio); if (fabsf(ratio - (float)tmp_1 / dh) < fabsf(ratio - (float)tmp_2 / dh)) *ow = tmp_1 < 1 ? 1 : tmp_1; else *ow = tmp_2 < 1 ? 1 : tmp_2; } else { tmp_1 = floor(dw / ratio); tmp_2 = ceil(dw / ratio); if (tmp_2 == 0 || fabs(ratio - (float)dw / tmp_1) < fabs(ratio - (float)dw / tmp_2)) (*oh) = tmp_1 < 1 ? 1 : tmp_1; else (*oh) = tmp_2 < 1 ? 1 : tmp_2; } } struct image_pal *image_quantize(struct image *original, const struct palette *palette) { struct image_pal *out = calloc(1, sizeof(struct image_pal)); out->w = original->w; out->h = original->h; out->pixels = calloc(original->w, original->h); out->palette = palette; for (int i = 0; i < out->w * out->h; i++) { int closest_color = 0; float closest_distance = 1e20; for (int color = 0; color < palette->count; color++) { float dist = get_color_difference(palette->colors[color], original->pixels[i]); if (dist <= closest_distance) { closest_distance = dist; closest_color = color; } } out->pixels[i] = closest_color; } return out; } float get_color_difference(union color a, union color b) { int dr = a.rgba.r - b.rgba.r, dg = a.rgba.g - b.rgba.g, db = a.rgba.b - b.rgba.b; return dr * dr + dg * dg + db * db; } float get_color_brightness(union color clr) { return get_color_difference(clr, (union color){ .v = 0 }); } void convert_2x3(const struct image_pal *img, struct cc_char *characters) { int w = img->w / 2, h = img->h / 3; for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { unsigned char darkest_i = 0, brightest_i = 0; float darkest_diff = 0xffffff, brightest_diff = 0; for (int oy = 0; oy < 3; oy++) { for (int ox = 0; ox < 2; ox++) { unsigned char pix = img->pixels[ox + (x + (y * 3 + oy) * w) * 2]; float brightness = get_color_brightness(img->palette->colors[pix]); if (brightness >= brightest_diff) { brightest_i = pix; brightest_diff = brightness; } if (brightness <= darkest_diff) { darkest_i = pix; darkest_diff = brightness; } } } unsigned char bitmap = 0; const static unsigned char pixel_bits[3][2] = { { 1, 2}, { 4, 8 }, { 16, 0 } }; for (int oy = 0; oy < 3; oy++) { for (int ox = 0; ox < 2; ox++) { if (ox == 1 && oy == 2) continue; unsigned char pix = img->pixels[ox + (x + (y * 3 + oy) * w) * 2]; float diff_bg = get_color_difference(img->palette->colors[darkest_i], img->palette->colors[pix]); float diff_fg = get_color_difference(img->palette->colors[brightest_i], img->palette->colors[pix]); if (diff_fg < diff_bg) { bitmap |= pixel_bits[oy][ox]; } } } { unsigned char pix = img->pixels[1 + (x + (y * 3 + 2) * w) * 2]; float diff_bg = get_color_difference(img->palette->colors[darkest_i], img->palette->colors[pix]); float diff_fg = get_color_difference(img->palette->colors[brightest_i], img->palette->colors[pix]); if (diff_fg < diff_bg) { bitmap ^= 31; unsigned char tmp = darkest_i; darkest_i = brightest_i; brightest_i = tmp; } } characters[x + y * w].character = 0x80 + bitmap; characters[x + y * w].bg = darkest_i; characters[x + y * w].fg = brightest_i; } } } void convert_6x9(const struct image_pal *img, struct cc_char *characters) { int w = img->w / 6, h = img->h / 9; float palette_self_diffs[0x100][0x10] = {{(float) 0xffffff}}; for (int input_color = 0x0; input_color < 0x100 && input_color < img->palette->count; input_color++) { for (int output_color = 0x0; output_color < 0x10 && output_color < img->palette->count; output_color++) { palette_self_diffs[input_color][output_color] = get_color_difference(img->palette->colors[input_color], img->palette->colors[output_color]); } } for (int y = 0; y < h; y++) { #ifdef USE_OPENMP #pragma omp parallel for #endif for (int x = 0; x < w; x++) { float chunk_palette_diffs[6][9][0x10] = {{{(float) 0xffffff}}}; for (int ox = 0; ox < 6; ox++) { for (int oy = 0; oy < 9; oy++) { uint8_t pixel_unresolved = img->pixels[ ox + (x + (y * 9 + oy) * w) * 6 ]; for (int color = 0x0; color < 0x10 && color < img->palette->count; color++) { chunk_palette_diffs[ox][oy][color] = palette_self_diffs[pixel_unresolved][color]; } } } float min_diff = 0xffffff; char closest_sym = 0x00, closest_color = 0xae; for (int sym = 0x01; sym <= 0xFF; sym++) { if (sym == '\t' || sym == '\n' || sym == '\r' || sym == '\x0e') { continue; } for (int color = 0x00; color <= 0xff; color++) { float difference = 0; for (int oy = 0; oy < 9; oy++) { unsigned char sym_line = cc_font_atlas[sym][oy]; for (int ox = 0; ox < 6; ox++) { bool lit = sym_line & (0x80 >> ox); difference += chunk_palette_diffs[ox][oy][lit ? color >> 4 : color & 0xF]; } } if (difference <= min_diff) { min_diff = difference; closest_sym = sym; closest_color = color; } } } characters[x + y * w].character = closest_sym; characters[x + y * w].bg = closest_color & 0xF; characters[x + y * w].fg = closest_color >> 4; } } } struct { uint8_t count; union color colors[256]; } custom_palette_data; struct palette *custom_palette_resize(uint8_t size) { custom_palette_data.count = size; return (struct palette*)&custom_palette_data; } struct palette *custom_palette_from(const struct palette *orig) { custom_palette_data.count = orig->count; for (int i = 0; i < custom_palette_data.count; i++) { custom_palette_data.colors[i] = orig->colors[i]; } return (struct palette*)&custom_palette_data; } struct k_means_state k_means_init(const struct image *image, struct palette *starting_palette) { size_t item_count = image->w * image->h; uint8_t cluster_count = starting_palette->count; struct k_means_state state = { .items = image, .clusters = starting_palette, .predicted_cluster = calloc(image->w, image->h), .centroid_intermediate = calloc(cluster_count, sizeof(struct k_means_centroid_intermediate)), .item_count = item_count, }; if (state.centroid_intermediate) { for (size_t i = 0; i < cluster_count; i++) { state.centroid_intermediate[i].closest_present_item = starting_palette->colors[i]; state.centroid_intermediate[i].closest_present_distance = 1e20; } } return state; } bool k_means_iteration(struct k_means_state *state) { if (!state->predicted_cluster || !state->centroid_intermediate) { return false; } bool changed = false; // Find closest cluster for (int i = 0; i < state->item_count; i++) { int closest_cluster = 0; float closest_distance = 1e20; for (int cluster = 0; cluster < state->clusters->count; cluster++) { union color item = state->items->pixels[i]; float dist = get_color_difference(state->clusters->colors[cluster], item); if (dist <= closest_distance) { closest_distance = dist; closest_cluster = cluster; } if (dist < state->centroid_intermediate[cluster].closest_present_distance) { bool can_update = true; for (int other_cluster = 0; other_cluster < state->clusters->count; other_cluster++) { if (other_cluster == cluster) { continue; } if (state->centroid_intermediate[other_cluster].closest_present_item.v == item.v) { can_update = false; break; } } if (can_update) { state->centroid_intermediate[cluster].closest_present_item = item; state->centroid_intermediate[cluster].closest_present_distance = dist; } } } if (!changed) { changed = state->predicted_cluster[i] != closest_cluster; } state->predicted_cluster[i] = closest_cluster; state->centroid_intermediate[closest_cluster].count += 1; state->centroid_intermediate[closest_cluster].sums.r += state->items->pixels[i].rgba.r; state->centroid_intermediate[closest_cluster].sums.g += state->items->pixels[i].rgba.g; state->centroid_intermediate[closest_cluster].sums.b += state->items->pixels[i].rgba.b; } // Update centroids for (int i = 0; i < state->clusters->count; ++i) { struct k_means_centroid_intermediate intermediate = state->centroid_intermediate[i]; if (intermediate.count) { union color centroid = { .rgba = { .r = intermediate.sums.r / intermediate.count, .g = intermediate.sums.g / intermediate.count, .b = intermediate.sums.b / intermediate.count, .a = 0xff, } }; if (!changed) { changed = state->clusters->colors[i].v != centroid.v; } state->clusters->colors[i] = centroid; } else { // No pixels are closest to this color // Warp the centroid onto the closest item state->clusters->colors[i] = intermediate.closest_present_item; } state->centroid_intermediate[i] = (struct k_means_centroid_intermediate) { .sums = {0, 0, 0}, .count = 0, .closest_present_item = state->clusters->colors[i], .closest_present_distance = 1e20 }; } return changed; } void k_means_end(struct k_means_state *state) { if (state->predicted_cluster) { free(state->predicted_cluster); } if (state->centroid_intermediate) { free(state->centroid_intermediate); } } struct palette *palette_k_means(const struct image *image, const struct palette *prototype) { if (!prototype) { prototype = &cc_default_palette; } struct palette *palette = custom_palette_from(prototype); struct k_means_state state = k_means_init(image, palette); for (int i = 0; i < K_MEANS_ITERATIONS; i++) { if (!k_means_iteration(&state)) { fprintf(stderr, "early k-means stop at iteration %d\n", i); break; } } k_means_end(&state); return palette; }