forked from hkc/cc-stuff
Try to avoid having unused palette items when the source image only uses a limited gamut region
Warp each empty cluster's centroid onto the closest dataset item
This commit is contained in:
parent
c91f4d79bd
commit
5f95f895d2
20
img2cpi.c
20
img2cpi.c
|
@ -95,6 +95,8 @@ struct k_means_state {
|
||||||
float r, g, b;
|
float r, g, b;
|
||||||
} sums;
|
} sums;
|
||||||
size_t count;
|
size_t count;
|
||||||
|
union color closest_present_item;
|
||||||
|
float closest_present_distance;
|
||||||
} *centroid_intermediate;
|
} *centroid_intermediate;
|
||||||
size_t item_count;
|
size_t item_count;
|
||||||
};
|
};
|
||||||
|
@ -683,6 +685,12 @@ struct k_means_state k_means_init(const struct image *image, struct palette *sta
|
||||||
.centroid_intermediate = calloc(cluster_count, sizeof(struct k_means_centroid_intermediate)),
|
.centroid_intermediate = calloc(cluster_count, sizeof(struct k_means_centroid_intermediate)),
|
||||||
.item_count = item_count,
|
.item_count = item_count,
|
||||||
};
|
};
|
||||||
|
if (state.centroid_intermediate) {
|
||||||
|
for (size_t i = 0; i < cluster_count; i++) {
|
||||||
|
state.centroid_intermediate[i].closest_present_item = starting_palette->colors[i];
|
||||||
|
state.centroid_intermediate[i].closest_present_distance = 1e20;
|
||||||
|
}
|
||||||
|
}
|
||||||
return state;
|
return state;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -697,11 +705,16 @@ bool k_means_iteration(struct k_means_state *state) {
|
||||||
int closest_cluster = 0;
|
int closest_cluster = 0;
|
||||||
float closest_distance = 1e20;
|
float closest_distance = 1e20;
|
||||||
for (int cluster = 0; cluster < state->clusters->count; cluster++) {
|
for (int cluster = 0; cluster < state->clusters->count; cluster++) {
|
||||||
float dist = get_color_difference(state->clusters->colors[cluster], state->items->pixels[i]);
|
union color item = state->items->pixels[i];
|
||||||
|
float dist = get_color_difference(state->clusters->colors[cluster], item);
|
||||||
if (dist <= closest_distance) {
|
if (dist <= closest_distance) {
|
||||||
closest_distance = dist;
|
closest_distance = dist;
|
||||||
closest_cluster = cluster;
|
closest_cluster = cluster;
|
||||||
}
|
}
|
||||||
|
if (dist <= state->centroid_intermediate[cluster].closest_present_distance) {
|
||||||
|
state->centroid_intermediate[cluster].closest_present_item = item;
|
||||||
|
state->centroid_intermediate[cluster].closest_present_distance = dist;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
if (!changed) {
|
if (!changed) {
|
||||||
changed = state->predicted_cluster[i] != closest_cluster;
|
changed = state->predicted_cluster[i] != closest_cluster;
|
||||||
|
@ -731,9 +744,10 @@ bool k_means_iteration(struct k_means_state *state) {
|
||||||
state->clusters->colors[i] = centroid;
|
state->clusters->colors[i] = centroid;
|
||||||
} else {
|
} else {
|
||||||
// No pixels are closest to this color
|
// No pixels are closest to this color
|
||||||
// TODO: wiggle the centroid?
|
// Warp the centroid onto the closest item
|
||||||
|
state->clusters->colors[i] = intermediate.closest_present_item;
|
||||||
}
|
}
|
||||||
state->centroid_intermediate[i] = (struct k_means_centroid_intermediate) { .sums = {0, 0, 0}, .count = 0 };
|
state->centroid_intermediate[i] = (struct k_means_centroid_intermediate) { .sums = {0, 0, 0}, .count = 0, .closest_present_item = state->clusters->colors[i], .closest_present_distance = 1e20 };
|
||||||
}
|
}
|
||||||
|
|
||||||
return changed;
|
return changed;
|
||||||
|
|
Loading…
Reference in New Issue